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Implicit Neural Representations (INRs), which are models

that use neural networks to represent signals as continuous

functions, have gained great attention in recent years in

medical imaging tasks, especially in reconstruction.

Motivated by their practicality, we cover various aspects of

INR models in medical imaging, including their application

in tasks such as image reconstruction, segmentation,

registration, novel view synthesis, and compression, along

with the clinical importance of these models. We further

discuss their utilization and advantages in different tasks

and the challenges they face, along with potential future

directions.

Fig. 1. The number of published papers in each medical task over the recent 

years. The bar charts indicate a remarkable growth of interest in applying 

these models to medical imaging tasks. 

1. Introduction 2. Background

Modifications to Address Spectral Bias:

• Input Modification: Map input to higher-dimensional space by a positional encoding.

• Activation Function Modification: Use sine as the activation function (SIREN). 

• Output Modification: Each node of the MLP is responsible for reconstructing a part of the signal.

Neural Radiance Fields (NeRFs): a neural volume rendering model that bridges implicit 

representations and novel view synthesis. 

Spectral bias: A problem in ReLU-based Networks where they weakly capture high-frequency in 

signals.

Function: 𝑠𝑝𝑎𝑡𝑖𝑎𝑙 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 → 𝑣𝑎𝑙𝑢𝑒𝑠 Ex: 𝑥, 𝑦, 𝑧 → 𝑅𝐺𝐵 𝑣𝑎𝑙𝑢𝑒

Fig. 2. The figure illustrates various modifications to alleviate the spectral bias problem in INRs, provides an overview of their 

underlying principles, and introduces NeRF as an additional background method

3. Clinical Importance

1. Eliminating the Need for External Annotations: INRs are valuable because they reduce the reliance on external sources like clinicians and medical 

professionals for ground truth annotations in medical imaging. This streamlines the annotation process, making it less time-consuming, expensive, and effort-

intensive.

2. Improved Imaging Quality: INRs are particularly beneficial for tasks like super-resolution in medical imaging. They can enhance image quality and address

issues like motion artifacts, blurred images, or poorly defined structures caused by patient movement during procedures such as CT scans, PET scans, MRI, 

and ultrasound.

3. Solving Inverse Imaging Problems: INRs enable the reconstruction of CT or MRI scans directly from sensor data, making it possible to track tissue 

progression over time. This aids in providing updated scans and monitoring changes in medical conditions.

4. Sparse Data Reconstruction: INRs are useful for reconstructing images from sparsely sampled data, which is crucial in applications like reducing radiation 

dose in CT imaging and accelerating MRI scans. This can improve diagnostic accuracy and aid medical professionals in decision-making.

5. Enhancing Robotic Surgery: Integrating INRs into robotic surgical systems enhances the perception and understanding of the surgical environment. INRs 

help interpret intraoperative images in real-time, providing feedback to surgeons and aiding in accurate tissue segmentation, anatomical structure localization, 

and surgical tool manipulation.

4. Taxonomy

We provide a taxonomy with a focus on the application of INRs in several medical imaging tasks. For each task, we review two papers with sufficient detail.

Reconstruction:

1) NeRP: Reconstructs high-quality CT and MRI images from sparsely sampled measurements by embedding a prior from an earlier scan.

2) DCTR: Calculates the loss between the new CT measurement and the measurement taken in the previous time step, then propagates the 

loss back to the MLP in order to remove noise from the new scan and reconstruct its CT image.

Segmentation:
1) BS-ISR: a combination of INR and CNNs to model the segmentation boundary by mapping CT slice coordinates to spline coefficients.

2) Retinal-INR: An INR model enhances the image resolution, while a Vision Transformer (ViT) extracts features from the original image

Registration:
1) mirnf: uses neural fields to represents the transformation between pair of images.

2) IDIR: uses insights from differentiable rendering to combine implicit deformable image registration model with regularization terms.

Neural 

Rendering

1) MedNeRF: Combines NeRF and a CNN to generate CT projections from X-rays by training NeRF as the generator to output image 

patches and a CNN as the discriminator to refine NeRF outputs.

2) Surgical Neural Rendering: NeRF-based rendering in robotic surgery that captures non-rigid deformations and reconstruct the 3D 

structures of scenes.

1) TINC: Uses octree partitioning to enable visually similar blocks to share parameters within a tree-shaped neural network structure

2) SCI: Introduces adaptive partitioning to divide the data into blocks within INR’s spectrum envelop then compresses each block
Compression:

5. Comparative Overview

1. Preference for Image Reconstruction: Image reconstruction is more 

popular and has received greater interest compared to others. This 

preference is driven by its ability to enhance resolution and reduce noise, 

especially in medical scenarios with uncertain imaging conditions.

2. Local Information: Some methods use CNNs to capture and encode 

local features and spatial relationships, which helps to create accurate and 

context-aware representations

3.Sparse View CT Reconstruction: The challenge of reconstructing CT 

images with sparse and limited measurements is greatly addressed, which 

is crucial for minimizing radiation exposure. Several methods use prior 

information or geometric relationships to improve the reconstruction 

process. 

4.Network Type: The methods can be separated into SIREN-based and 

NeRF-based network designs. Most reviewed works use ReLU MLPs with 

Fourier mapping for input to mitigate spectral bias. NeRF-based designs 

are commonly used for volume rendering and view synthesis. The choice 

of network type depends on the specific task's objectives

6. Open Challenges

1. Computational Complexity and Training Time: Creating neural 

representations for individual signals demands significant memory and 

computational resources. INRs can be time-consuming to fit for high-

dimensional data like 3D volumes, posing challenges for real-time 

applications. Techniques such as meta-learning and multi-scale 

representations aim to speed up training and optimize memory usage.

2. Scaling to Complex Signals: Representing higher-resolution or complex 

3D shapes with fine detail is challenging due to the highly nonlinear nature of 

the mapping. Expanding the model's complexity can help but may lead to 

computational issues such as vanishing/exploding gradients. Researchers 

must balance model complexity with available computational resources, and 

various techniques have been developed to address this.

3. Video-Based INR: INRs perform well in video compression, allowing for 

parallel processing during decoding. This makes them valuable in robotic-

assisted surgery where both speed and accuracy are crucial. However, 

modeling semantic relationships between frames in high-frequency videos 

presents challenges, necessitating ongoing research and development.
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